MIXED-FLOWPUMPS

INSTRUSTIONS FOR USE AND INSTALLATION

Contents

Ι.	General Description	1
1.	Construction and Action	2
H.	Characteristics	5
	Performance curves & tables	
	4HBC - 35	6
	6HBC-35 ·····	7
	8HBC-35 ····	8
	10HBC-30	9
	10HBC-40 ·····	10
	12HBC ₂ -40	11
	12HBC-50T	12
	14HBC-40	13
	16HBC-40 ·····	14
	16HBC-30 ·····	15
	20HBC-40 ·····	16
	26HBC-40 ·····	17
	26HBC-30 ·····	18
	26HBC-50 ·····	19
N.	Installation ·····	20
ν.	Use and Maintenance	26
VI.	Troubles and Remedies	28

Contents

Ι.	General Description	1
Ι.	Construction and Action	2
I.	Characteristics	5
	Performance curves & tables	
	4HBC-35	6
	6HBC-35 ·····	7
	8HBC-35	8
	10HBC-30	9
	10HBC-40 ·····	10
	12HBC ₂ -40	11
	12HBC-50T	12
	14HBC-40	13
	16HBC-40 ·····	14
	16HBC-30 ·····	15
	20HBC-40 ·····	16
	26HBC-40 ·····	17
	26HBC-30 ·····	18
	26HBC-50 ·····	19
IV.	Installation	20
٧.	Use and Maintenance	26
VI.	Troubles and Remedies	28

I. GENERAL DESCRIPTION

1. Applications

Type HBC mixed-flow pumps are horizontal, single stage, single suction, overhunging-type volute pumps. The models are 4HBC-35, 6HBC-35, 8HBC-35, 10HBC- $\frac{30}{40}$, 12HBC₂-40, 12HBC-50T, 14HBC-40, 16HBC- $\frac{30}{40}$, 20HBC-40, 26HBC- $\frac{30}{40}$. Main specifications: Head 3-15m, Capacity 100-5000m³/h. The pumps are suitable for agricultural irrigation and drainage or industrial water

supply and drainage. 2. Features

Small space, light weight, high efficiency simple construction, reliable operation, and easy maintenance and repair.

3. Model Notation

For example, model 12HBC₂-40

12-1/25 of pump inlet diameter in mm (i. e. the pump inlet diameter is 300mm),

H-mixed,

B-single stage, single suction, overhunging-type volute pump,

C, --- second improvement,

40—1/10 of specific speed of the pump (i.e. the specific speed of the pump is 400).

4. Driving Arrangement

There are two types of drive assembly available; one is pulley and belt device, the other is coupling. An electrical motor or a diesel engine is most commonly used to drive the pump. The model of the motor or the engine must be specified in the contract (including rated power and revolving speed), so that the manufacturer can determine the specifications of coupling or pulley.

5. Direction of Rotation

As observed from the suction side of the pump, the rotation of the impeller is counter-clockwise. However, the direction of rotation of model 26HBC-30,-40,-50 pumps is just opposite to the above statement. Please pay attention to it when install and use the pumps.

I. Construction And Action

- 1. Type HBC mixed-flow pump is composed of pump casing, pump shroud, impeller, shaft and bearing case (bearing bracket), etc.
- 2. The pump shroud is a part which connects pump casing and inlet pipe. There should be a certain gap between the shroud and the impeller. If the gap is too small, rubbing action will occurs; and a big gap will result in too much return flow of liquid from the high pressure side to the suction side of the impeller, which would decrease the efficiency of the pump. The gap can be adjusted by changing the thickness of paper gaskets, and its optimum suitable for service is $0.3\sim0.7$ mm.
- 3. The shaft sealing package is made up of stuffing box, seal cage, gland and oil-filled asbestos packing. Its function is to prevent air from getting into the pump and too more water from coming out of the pump along the shaft.
- 4. The shaft sleeve is used to prevent the shaft from rubbing with the packing stuff. The sleeve should be replaced in time when it wears out.
- 5. The pump shaft is supported by ball bearings. For model 6HBC-14 HBC pumps, light lubricating oil is used, and the oil level should be kept normal; for model 16HBC, 20HBC and 26HBC pumps calcium grease of high quality is used, and 60% of the space of bearing box should be filled with that kind of grease.
- 6. The screwed hole on the top of pump casing is used for pouring prime water into the pump or connecting with a vacuum pump to evacuate air and draw up water.
- 7. The outlet of 4HBC-12HBC pumps is upward, as in figure 1; and that of 16HBC-26HBC pumps is horizontal as in figure 2. The outlet of 14HBC pump has two types, either upward or horizontal.

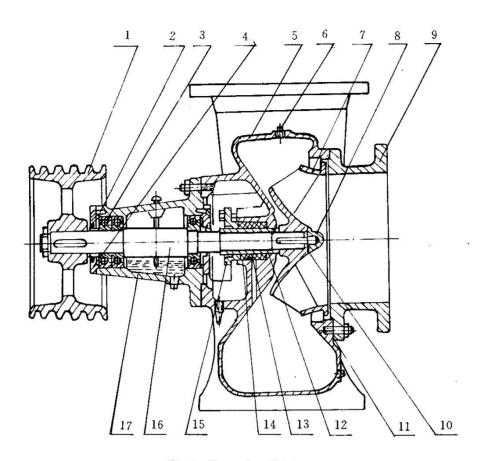


Fig 1. Upward outlet type

1	Pulley	7	Impeller	13	Seal cage
2	Thrust sleeve	8	Impeller nut	14	Packing stuff
3	Bearing	9	Pump shroud	15	Gland
4	Bearing end cover	10	Washer	16	Shaft
5	Pump casing	11	Paper gasket	17	Bearing case
6	Screwed plug	12	Shaft sleeve		

Pump Model	Bearing Model	Packing Specification	Pump Model	Bearing Model	Packing Specification
4HBC-35	306	8×8×141	$10HBC - \frac{30}{40}$	311	13×13×229
6HBC-35	307	10×10×157	12HBC ₂ 40	311	13×13×229
8HBC-35	308	10×10×,189	12HBC-50T	311	12×12×226

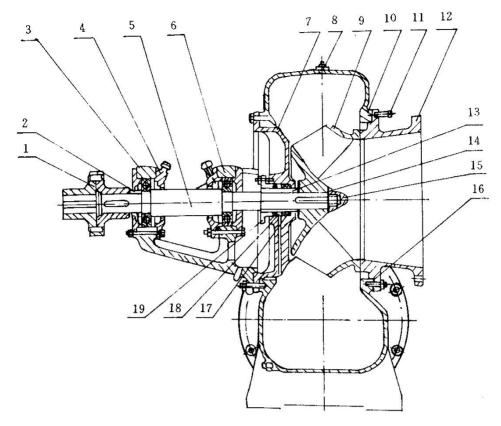


Fig 2. Horizontal outlet type

1	Coupling	8	Screwed plug	15	Impeller nut
2	Thrust sleeve	9	Impeller	16	Paper gasket
3	Bearing case	10	Pump casing	17	Packing stuff
4	Bearing end cover	11	Screw	18	Seal cage
5	Shaft	12	Pump shroud	19	Gland
6	Bearing	13	Shaft sleeve		
7	Tail cover	14	Washer		

Pump Model	Bearing Model	Packing Specification	Pump Model	Bearing Model	Packing Specification
14HBC-40	311	13×13×229	20HBC-40	314	15×15×298.5
16HBC-30,	312	13×13×261	26HBC-30, -40,-50	46322	20×20×420

II. CHARACTERISTICS

1. Plrformance curves

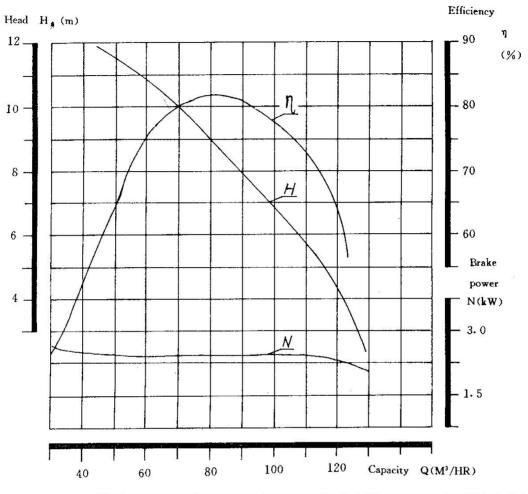
The performance curves are shown later.

- 2. Changing of revolving speed
- (a) The revolving speed of the pump can be altered so as to adjust the head and capacity suitable for various requirements.
- (b) Method to change the speed: to change the pulley of the pump, or to change the gears of a gear drive equipment, or to select motive power of different speeds.
- (c) After the speed n is changed, the capacity Q, head H and brake power N are also changed. They are linked by three following relationships:

$$Q_1 = Q \frac{n_1}{n}$$
, $H_1 = H(\frac{n_1}{n})^2$, $N_1 = N(\frac{n_1}{n})^3$

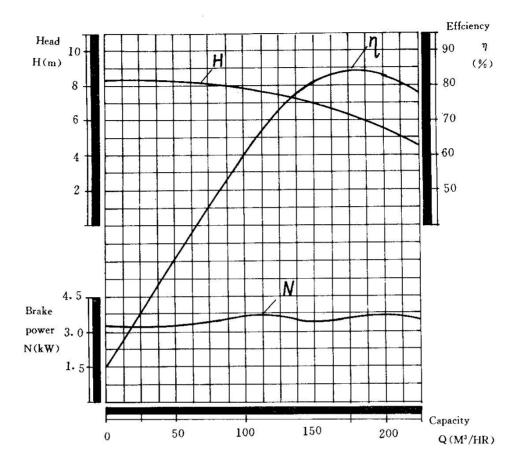
where Q_1 , H_1 , N_1 denote capacity, head and brake power respectively after varying the speed, and Q, H, N are capacity, head and brake power at defined pump speed.

- (d) When the speed of pump is increased, the brake power is increased by cubic form, the suction head is decreased, and the life of pump is shortened. To increase pump speed too much will probably cause abnormal events. Therefore, it should be very carefully considered to increase the speed.
- (e) When the speed is decreased by a large amount, the pump utilization will be decreased. So it should be avoided as possible to run the pump at a too low speed.

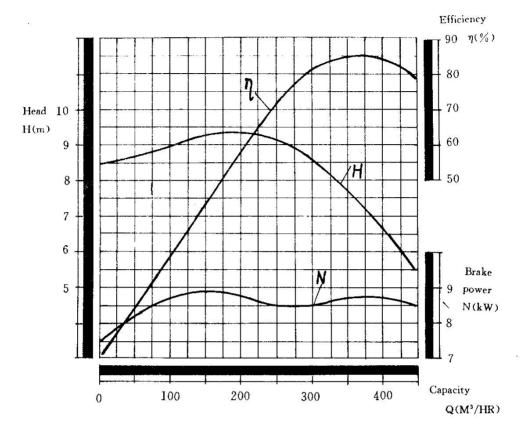

The following performance curves are derived from typical testing reports. The parameters listed in the performance tables are the specifications for exwork testing.

3. Allowable suction head [Hs], required net positive suction head (NPSH) r and critical net positive suction head (NPSH) c can be approximately related by following two relationships:

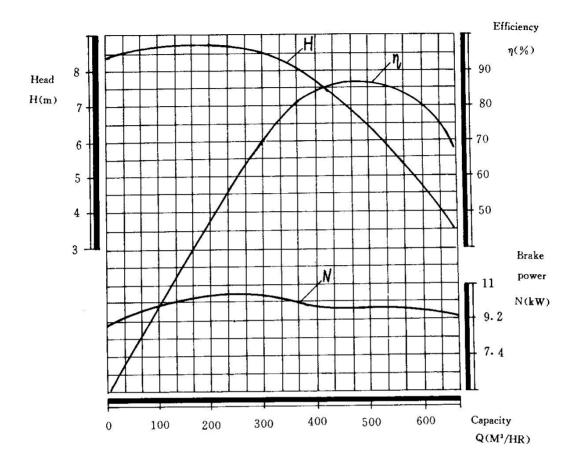
[HS]
$$\approx$$
10-(NPSH) r
(NPSH) r \approx (NPSH) c+0.3


where measuring units of all quantity are shown in meter.

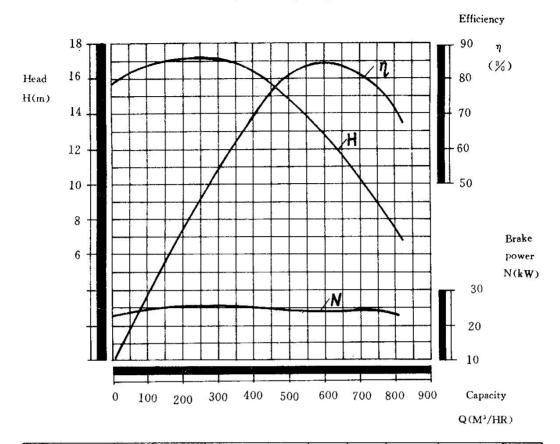
4HBC-35 Mixed-flow pump performance curves (n=2900r/min)


Capaci	ty Q	Head	Speed	Power I	V (kW)	Effic-	$\frac{1}{2}$	Inlet and	Impeller	Weight	
(m³/h)	(l/s)	H (m)	Н	n (r/min)	Brake power	Motive	iency η (%)	(m)	outlet bore (mm)	diameter .(mm)	(kg)
98 89 70	27 25 19	7 8 10	2900	2. 40 2. 40 2. 38	2.5	78 81 80	3.6	100	117	29	

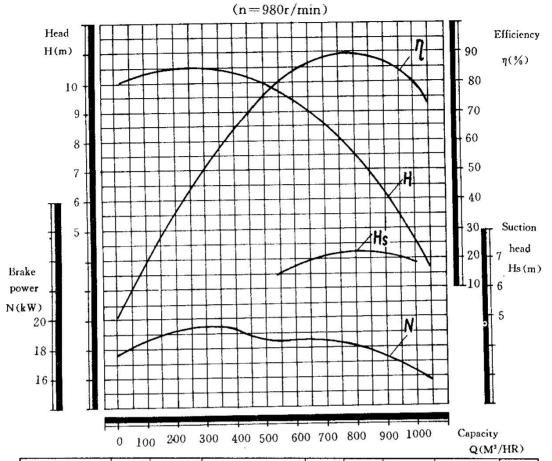
6HBC-35 Mixed-flow pump performance curves (n=1450r/min)


Capaci	ty Q	Head	Speed	Power l	V (kW)	Effic-	Ĝ.	Inlet and	Impeller	Weight
(m ³ /h)	(l/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(NPSH)r (m)	outlet bore (mm)	diameter (mm)	(kg)
140 180 200	38. 9 50 55. 6	6. 6 6. 0 5. 0	1450	3. 4 3. 7 3. 5	5.5	75 80 78	2. 7	150	196	65
164 211 234	46 59 65	9. 0 8. 2 6. 9	1700	5. 4 6. 0 5. 7	7.5	75 80 78	3. 2	150	196	65

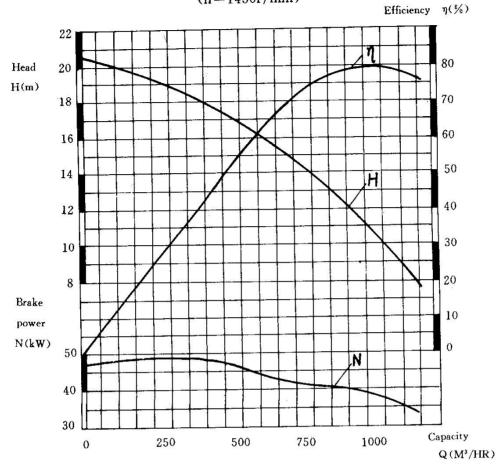
8HBC-35 Mixed-flow pump performance curves (n=1200r/min)


Capaci	ty Q	Head	Speed	Power I	V (kW)	Effic-	2	Inlet and	Impeller	Weight
(m³/h)	(1/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(NPSH)r	outlet bore (mm)	diameter (mm)	(kg)
300 360 450	83 100 125	8. 0 7. 0 5. 1	1200	8. 46 8. 39 8. 10	11	77 82 77	3.0			
360 450 540	100 125 150	12.0 10.0 7.5	1450	15.3 14.9 14.4	18.5	77 82 77	4.2	200	256	119
400 500 600	111 139 167	14.5 12.2 9.5	1600	20. 5 20. 2 20. 2	30	77 82 77	5.2			

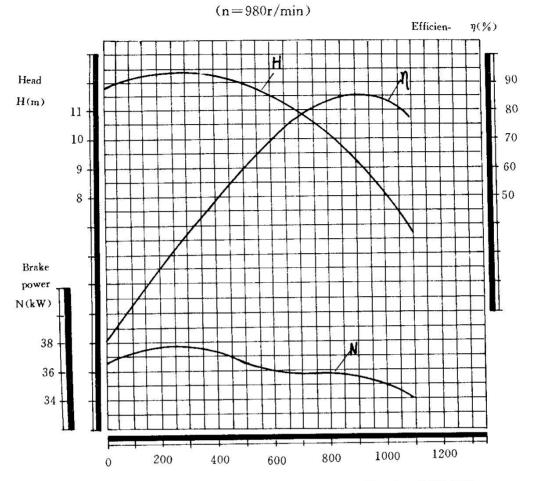
10HBC-35 Mixed-flow pump performance curves (n=980r/min)


Capaci	ty Q	Head	Speed	Power l	V (kW)	Effic-	r) (NP	Inlet and	Impeller	 Weight
(m³/h)	(1/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(m)	outlet bore (mm)	diameter (mm)	(kg)
400 450 500	111 125 139	8. 0 7. 0 6. 3	980	10. 7 10. 3 10. 9	15	81.5 83.5 79.0	4.0	250	304	160

10HBC-40 Mixed-flow pump performance curves (n=1450r/min)

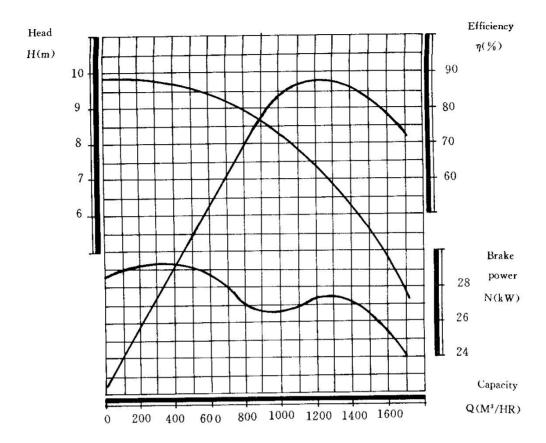

Capaci	ty Q	Head	Speed	Power 1	N (kW)	Effic-	9	Inlet and	Impeller	Weight
(m³/h)	(1/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(NPSH)r (m)	outlet bore (mm)	diameter (mm)	(kg)
400 450 500	111 125 139	5.5 4.8 4.0	980	7.2 7.5 7.4	11	83. 0 83. 0 80. 0	4.0			
550 650 720	153 180 200	13. 2 11. 6 9. 8	1450	24. 0 24. 6 24. 0	30	83. 0 83. 0 80. 0	5.5	250	280	160
640 720 800	178 200 222	15.5 14.3 11.8	1600	32. 8 32. 8 32. 4	37	83. 0 83. 0 80. 0	7.0			

12HBC₂-40 Mixed-flow pump performance curves

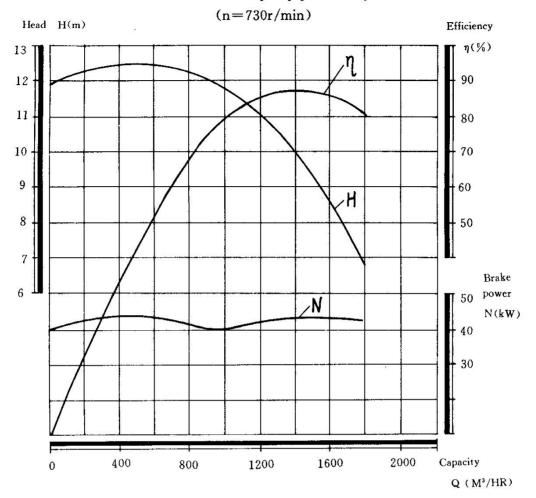

Capaci	ty Q	Head	Speed	Power l	V (kW)	Effic-	9	Inlet and	Impeller	Weight
(m³/h)	(l/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(NPSH)r (m)	outlet bore (mm)	diameter (mm)	(kg)
507 518 678	141 161 188	4.4 3.9 2.8	730	7.4 7.3 6.6	11	82 84 78	3			
680 780 910	189 217 253	8. 0 7. 0 5. 0	980	18. 1 17. 7 15. 9	22	82 84 78	4	300	341	200
902 1035 1207	251 288 335	14.1 12.3 8.8	1300	42.3 41.3 37.1	55	82 84 78	7		¥	

12HBC-50 Mixed-flow pump performance curves (n=1450r/min)

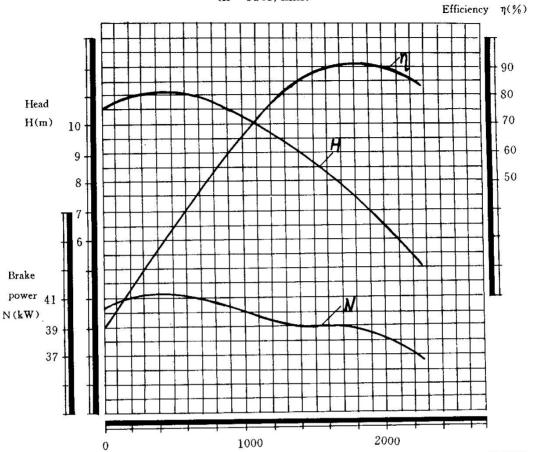
Capaci	ty Q	Head	Speed	Power 1	(kW)	Effic- iency	_	$\hat{\mathbf{z}}$	Inlet and outlet	Impeller	Weight
(m³/h)	(l/s)	H (m)	n (r/min)	Brake power	Motive power	η (%)	(m)	(NPSH)r	bore (mm)	diameter (mm)	(kg)
880 1020 1150	244 283 319	13.0 10.6 8.3	1450	40.5 38.5 34.9	55	74 77 74	7.	. 5	300	345	200
970 1140 1250	269 317 347	16. 0 12. 8 10. 7	1600	54. 0 51. 7 47. 0	75	74 77 74	8	.0			


14HBC-40 Mixed-flow pump performance curves

M^3/HR
١

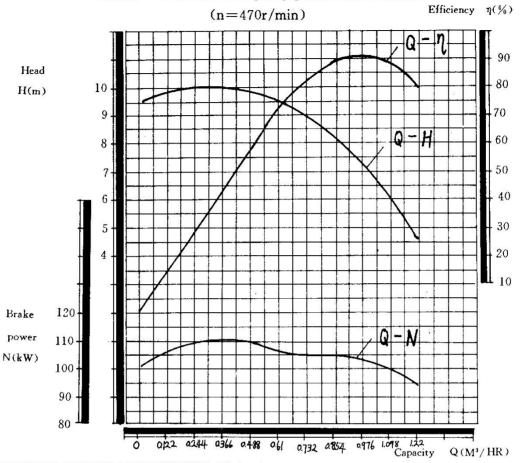

Capaci	ty Q	Head	Speed	Power I	N (kW)	Effic-		ê	Inlet and	Impeller	Weight
(m³/h)	(1/s)	H (m)	n (r/min)	Brake Motive		iency η (%)	(m)	(NPSH)r	outlet bore (mm)	diameter (mm)	(kg)
670 745 819	186 207 228	5. 2 4. 4 3. 7	730	11. 2 10. 4 10. 1	15	85. 0 85. 5 81. 5	4.	5	350	376	330
900 1000 1100	250 278 306	9. 4 8. 0 6. 7	980	27. 1 25. 5 24. 6	30	85.0 85.5 81.5	4.	5	330	:	330

16HBC-40 Mixed-flow pump performance curves (n=730r/min)


Capaci	ty Q	Head	Speed	Power l	۷ (kW)	Effic-	R	Inlet and outlet	Impeller	Weight
(m³/h)	(1/s)	H (m)	n (r/min)		Motive power	iency	(NPSH)r (m)	bore (mm)	diameter (mm)	(kg)
1080 1260 1368	300 350 380	7.8 6.8 6.2	730	27. 9 27. 7 28. 1	30	84.0 86.0 84.0	4	400	445	550
1450 1692 1836	403 470 510	14·1 12·3 11·2	980	66. 3 66. 0 66. 7	75	84. 0 86. 0 84. 0	5. 5	400	445	550

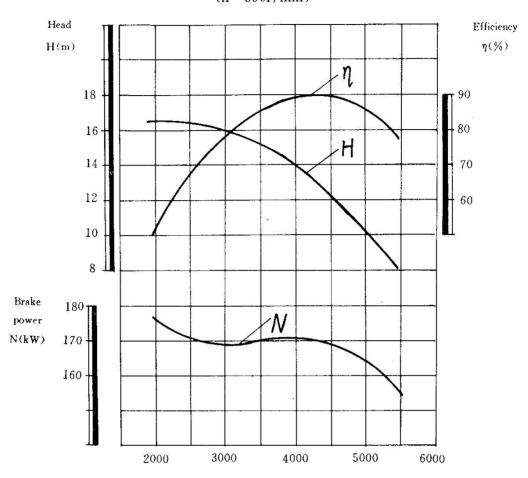
16HBC-30 Mixed-flow pump performance curves

Capaci	ty Q	Head	Speed	Power l	N (kW)	Effic-	9	Inlet and	Impeller	Weight
(m³/h)	(l/s)	H (m)	n (r/min)	Brake power	Motive power	iency	(NPSH)r (m)	outlet bore (mm)	diameter (mm)	(kg)
1098 1400 1720	305 389 478	11.5 9.94 7.55	730	41. 5 44. 3 42. 4	55	83. 0 85. 5 83. 5	4	400	480	F.C.O.
1474 1880 2309	409 522 641	20. 7 18. 0 13. 6	980	100. 2 107. 9 102. 5	110	83. 0 85. 5 83. 5	5. 5	400	480	560

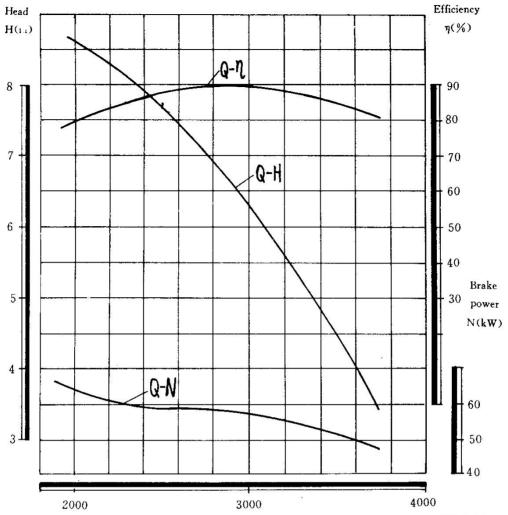

20HBC-40 Mixed-flow pump performance curves (n=580r/min)

Capacity Q (M3/HR)

Capaci	ty Q	Head	Speed	Power I	N (kW)	Effic-	9	Inlet and	Impeller	Weight
(m³/h)	(l/s)	H (m)	n (r/min)	Brake Motive		iency η (%)	(NPSH)r	outlet bore (mm)	diameter (mm)	(kg)
1690 1980 2180	469 550 606	7. 6 6. 2 5. 3	580	41. 9 38. 9 39. 1	55	83. 4 86. 0 80. 4	5.5	500	556	790
2127 2492 2744	591 692 762	12.0 9.8 8.4	730	83. 4 77. 3 78. 0	95	83. 4 86. 0 80. 4	6.5	500	556	790


 $26 \mathrm{HBC} - 40$ Mixed-flow pump performance curves

Capaci	ty Q	Head	Speed	Power l	N (kW)	Effic-	- G	Inlet and	Impeller	 Weight
(m³/h)	(1/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(MPSH)r	outlet bore (mm)	diameter (mm)	(kg)
3060 3400 3960	0. 850 Q. 944 1. 100	6.5	450	70. 9 66. 8 62. 0	90	87 90 87	5.5			
3295 3663 4244	0. 915 1. 017 1. 185	7.6	485	88. 7 84. 2 78. 8	100	87 90 87	5.5	650	730	1800
4014 4457 5193	1	12.70 11.18 8.59	590	159. 6 150. 8 139. 6	180	87 90 87	5. 5			


)

26HBC-30 Mixed-flow pump performance curves (n=590r/min)

Capaci	ty Q	Head	Speed	Power !	V (kW)	Effic-		9	Inlet and	Impeller	Weight
(m³/h)	(l/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(m)	(NPSH)r	outlet bore (mm)	diameter (mm)	(kg)
3200 4000 5000	889 1111 1389	15.8 14.0 10.4	590	168 171 165	180	82 89 86	5.	5	650	730	1800
2658 3322 4153	738 923 1154	10.9 9.7 8.6	490	96. 2 98. 6 94. 5	115	82 89 86	5.	5	030	730	1600

26HBC-50 Mixed-flow pump performance curves (n=485r/min)

Capacity Q (M³/HR)

Capaci	ty Q	Head	Speed	Power I	N (kW)	Effic-	9	Inlet and	Impeller	Weight
(m³/h)	(1/s)	H (m)	n (r/min)	Brake power	Motive power	iency η (%)	(NPSH)r	outlet bore (mm)	diameter (mm)	(kg)
2650 3312 3600	736 920 1000	7. 15 5. 1 4. 0	485	59. 3 53. 5 49. 0	75	87 86 80	5.5	050	cor	1000
3324 4032 4379	896 1120 1216	10. 58 7. 55 5. 92	590	107 96. 4 88. 2	115	87 86 80	5. 5	650	685	1800

N. Installation

There are three types for the installation of HBC type pumps: underground, semi-underground, over-ground. The semi-underground type is better. The bearings of pumps of underground installation wear out frequently, and this does not exist in the pumps of semi-underground installation. For maintenance, the semi-underground installation takes away the difficulties which exist in underground installation. For suction piping, the semi-underground installation decreases the loss which exists in overground installation because of high suciton head and long suction pipe.

- 1. Requirements
- 1.1 Pump position: the bearing case of the pump should be adove the highest water level, and the lowest water level should be considered in such a way that the total suction head including the loss in inlet piping should not exceed the allowable suction head.
- 1. 2 The pump set should be located as close as possible to the water source so as to reduce the length of the suction piping and get a less loss.
- 1. 3 The whole piping system should be as straight and short as possible. When the pump is installed on land, a 90° or 33° elbow is used in inlet piping system (for 26HBC-30,-40,-50 pump, also including a 27° elbow). If the foundation is a one with a proper slope, the elbow at the discharge side can be eliminated. For special requirement, the user may suggest extra elbows before the contract is completed.
 - 2. Attentions
- 2.1 As for belt drive, the belt pulleys of both driver and pump should be aligned. The pulleys and belts must be covered by a safety guard.
- 2. 2 It is not correct to connect a elbow directly to the pump shroud. There should be a straight pipe between them so as to ensure that the velocity distribution of water flowing into the pump will be uniform.
- 2. 3 Between the flanges of pipes and pipe fittings there should be gaskets of asbestos or rubber in order to prevent water and air from leaking.
- 2.4 The inlet pipe must be stretched into the suction pool. The submerged length should be proper, and equals to 1D-3D to the river bottom, 1.5D-3D to the lowest water level, and 1D-1.5D to the suction pool wall (D is the dia-me-

ter of the suction pipe). For a bigger pump, a smaller number is more appreciated, vice versa.

- 2. 5 The outlet pipe must be submerged into the discharge pool and its end should be near to the water surface so as to reduce head loss.
- 2. 6 The end of the suction pipe must be netted with steel wire in order to prevent aquatic plants and other alien objects from entering into the impeller.
- 2.7 When the pump is installed on a ship and lubricated with oil, the inclination of the ship must be taken into consideration. The inclining can make the bearings out of the oil, which will result in breakdown of the bearings.
- 2. 8 Single-row annular contact ball bearings are used in 26HBC-30, -40, -50 pumps. An appropriate axial internal clearance is necessary to get high carrying capacity and prolong operating life.

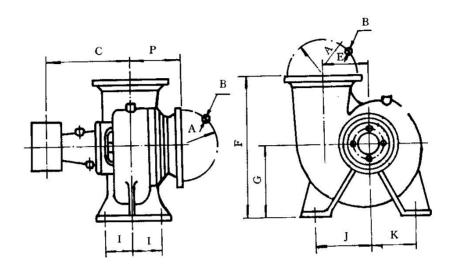


Fig 3. Dimensions for mounting

Model	A	В	С	D	Е	F	G	I	J.	К	Foundation bolt hole
4HBC-35	Ø142	6-Ø9	298	154	97	278	135	47 .	100	78	4-Ø12
6HBC-35	Ø210	6-Ø14	346	163	155	390	205	78	154	110	4−Ø18
8HBC-35	Ø270	6-Ø18	408	192	200	520	270	110	240	150	4-Ø18
10 HBC $-\frac{30}{40}$	Ø320	8-Ø18	526	251	232	585	297	123	262	164	4-Ø23
12HBC ₂ -40	Ø380	8-Ø18	526	245	282	710	360	150	320	200	4-Ø23
12HBC-50T	Ø380	8-Ø18	526	245	282	710	360	150	320	200	4-Ø23
14HBC-40	Ø445	8-Ø23	539	290	290	780	400	150	320	200	4-Ø23

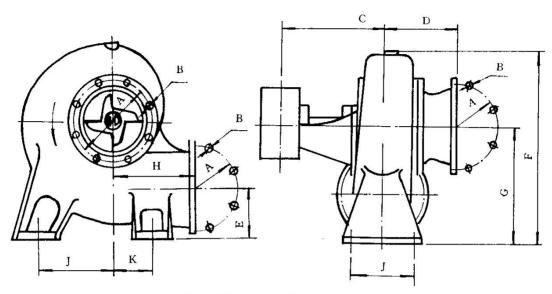


Fig 4. Dimensions for mounting

Model	A	В	С	D	E	F	G	Н	I	J	К	Foundation
14HBC-40	Ø445	8-Ø23	539	290	255	903	545	380	300	300	200	4-Ø23
16 HBC $-\frac{30}{40}$	Ø500	8−Ø23	674	305	285	1082	655	450	380	320	230	4cast holes Ø30
20HBC-40	Ø 600	8-Ø23	806	332	330	1226	730	565	390	425	335	4cast holes Ø30
26HBC $-\frac{30}{40}$	Ø770	12-Ø27	1138	480	430	1670	1000	735	580	550	430	4cast holes Ø34

Note:

- 1. The dimension "C" of model 26HBC-30, -40, -50 pumps refers to the distance between the pump center line and the end of coupling.
- 2. The direction of the outlet of model 26HBC-30, -40, -50 pumps is just opposite to one shown in Fig. 4.

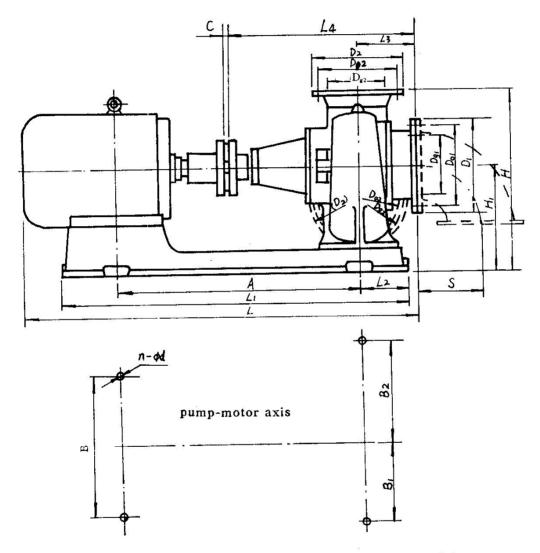


Fig 5. Direct-coupling installation dimensions of HBC pumps with base

Table Direct-coupling installation dimensions of HBC pumps

	S	115	162	217	267	267	302	302	302	377	430	500	009	600
	1	433	538	639	832	832	825	825	825	883	1046	1241	1618	1618
	7,	124	163	192	251	251	245	245	245	290	306	332	480	480
	L_2	85	120	158	183	183	215	218	205	225	350	370	282	282
٠,٢.	Γ_1	712	878	1165	1368	1406	1447	1573	1535	1525	1928 1994	2458	<u>2777</u> 2877	2877
L	7	825	1028	1330	1564	1628	1621	1778	1778	1749	2001 2071	2425	3012	3142
	Н	338	450	009	685	685	810	810	880	880	1242	1415	1846 1900	1900
	\mathbf{H}_{l}	195	265	350	397	397	460	460	530	200	810	910	1230	1230
	D_1	164	240	310	360	360	420	420	420	495	550.	640	840	840
	Do ₁ Do ₂	142	210	270	320	320	380	380	380	445	500	600	770	770
	Dg ₁ Dg ₂	100	150	200	250	250	300	300	300	350	400	500	650	650
ing that have	p⊘-u	4-Ø18	4-Ø21	4-Ø21	4-Ø25	4-Ø25	4-Ø25	4-Ø25	4-Ø25	4-Ø25	6-Ø22	6-Ø26	8-Ø26	8-Ø26
	$ m B_z$	166	229	323	357	357	425	425	323	445	320	430	436	436
Sundana	Bı	144	185	233	259	259	305	305	203	325	640 320	430	556	556
3	В	288	370	466	468	508	520	610	406	560	640	860	892	992
122 117	А	515	630	820	973	866	866	1085	1085	1060	2×624 $640 + 639$	2×814	3×765	3×765
	Motor Model	Y100L-2	Y132S-4	Y180M-4	Y180L-6	Y200L-4	Y200L2-6	Y250M-4	Y250M-4	Y225M-6	Y250M-8 Y280S-8	JS116-10	JS137-12 13-12	JS138-10
	speed (r/min)	2900	1450	1450	980	1450	086	1450	1450	980	730	580	470	580
	Model	4HBC-25	6HBC-35	8HBC-35	10HBC-30	10HBC-40	12HB ₂ C-40	12HBC-50T	12HBC—50T Welded base	14HBC-40 (Upward)	16HBC-40	20HBC-40	26HBC 40	

Note: The Speed refers to rated speed. The utilization of the inlet elbow of model 16HBC-40 20HBC-40, 26HBC-40 pumps can be determined by users

V. USE AND MAINTENANCE

1. Testing

After installation, the pump must be tested so as to inspect whether the rotation of pump is right and to remedy the troubles caused during installation.

- 2. Starting the pump
- 2.1 Shut down the delivery valve or the check valve.
- 2. 2 Start the motive unit and pour water into the pump through the screwed hole on the top of the pump casing; or open the check valve to let water flow from the discharge pool into the pump casing; or evacuate the air from the pump casing by a vacuum pump (soon after water is drawn up start the pump and stop the vacuum pump).
- 2. 3 When the pump is running under normal speed, gradually open the delivery valve, then regulate the packing stuffs. If the running conditions of the pump and the bearing temperature are normal and vibration is soft, keep the pump running (If a check valve is used, hang up its cap to reduce the resistance.
 - 3. Use and Maintenance
 - 3.1 Inspect the oil level in bearing case frequently.
- 3. 2 Inspect frequently the bearing temperature rise, which is limited to 75°C (too hot by feeling), and is roughly 35°C higher than the room temperature. If the bearing temperature is too high. stop the pump, find out the cause and remedy it.
- 3. 3 Note whether the brake power is increased or decreased and the capacity decreased suddenly. If these troubles happen, stop the pump and remedy them.
- 3. 4 Note frequently whether all bolts, screws and nuts are loosened by vibration in running.
- 3. 5 The regulation of packing stuff must be adequate and liquid must be kept flowing out from the gland drop by drop. If the packing stuff is too tight, the shaft will be overheated and brake power is increased; if the packing is too loose, leakage will be too much and efficiency is decreased, even air will probably penetrate into the pump.
- 3. 6 Note whether there is violent rubbing or knocking within the pump during running. If there is rubbing action between pump shroud and impeller, please add the thickness of paper gaskets. The required elearance is 0.3 -

- 0.8mm, and a small elearance is suitable for a small pump.
- 3. 7 When pump is directly coupled with a motor, the centrelines of both the motor and the pump should lie on the same straight line, so as to avoid vibration in running.
 - 3. 8 Inspect whether air is penetrating into the suction pipe system.
- 3. 9 In winter, after the pump is stopped, water must be drained off from the pump and pipes so as to prevent the pump from being frozen to crack.
- 3. 10 Replace the lubricating oil ir grease after the pump has been used for first 100 hours, afterwards replace the lubricating oil or grease for every 500 hours.
- 3. 11 After the pump has been used for 1000 hours, dismount and inspect the quick-wearing parts. When the pump will not be used for a long period, dismount all the moving parts, dry and paint them with antirust grease, and then well preserve them.

VI. TROUBLES AND REMEDIES

Troubles	Causes	Remedies
No water is pumped out	 Pouring water or evacuation is not enough Leakage in suction piping system Actual suction head is too high The direction of rotation is wrong The actual total head exceeds range of application 	 Pouring water or evacuating continuously Inspect and make no leakage occur Install the pump in a lower position Change the direction of rotation Decrease the total head
Pump runs nor- mally for a few minutes and then ceases to deliver water	 Too much bubbles surrounding the suction pipe There is air within suciton pipe Leakage in suction piping system Some arresting materials in the impeller or inlet piping system 	 Bottom of suction pipe should be about one meter below water level Get the air out Inspect the gaskets and tighten the unts Taking off
Insufficient dis- charge	 Some arresting materials in the impeller or inlet piping system Speed is too low or motive power is not enough The actual head is too high The impeller and pump shroud wear out and clearance is too large The delivery valve is opened not widely or the check valve is clogged The inlet pipe under water 	 Taking off Adjusting Decreasing Repair or replace the worn parts or adjust the clearance by paper gaskets Open the delivery valve or take off the arresting matrials The end of inlet pipe should

Troubles	Causes	Remedies
	level is not enough	be about one meter below water level
Brake power is	1. The speed is too high	1. Decreasing
too large	2. The shaft is bent 3. The packing is too tight	Adjusting Lossen the gland nuts or take out the packing and make it narrower
	4. The bearing wear out or break	4. Replacing
	5. The belt is too tight	5. Loosening
Noise and vi-	Two shafts not lie on the same straight line	1. Adjusting
	2. The shaft is bent or bearings wear out too much	2. Adjusting or replacing
	3. The nuts of foundation bolts have loosened	3. Tightening
	4. The impeller is clogged	4. Taking off
	5. Cavitation within the pump due	5. Install the pump in a lower po-
	to a too high suction head	sition
	6. There is something inside the pump	6. Take it off
Bearings are	1. Lubricating oil or grease is insufficient	1. Adding
	2. Lubricating oil or grease is bad	2. Wash the bearings and bearing
	or dirty	case and replace the lubricant
	3. Two shafts not lie on the same straight line	3. Adjusting
	4. Bearings wear out	4. Replacing
	5. The belts is too tight	5. Loosening

Troubles	Causes	Remedies
Packing is over- heated	 Packing is pressed too tightly or unevenly The packing is pressed oblique- ly to cause uneven friction with shaft sleeve 	 Loosen the gland nuts and tighten them regularly Loosen the gland nuts and tighten them evenly
Too much leak- age in packing	 Packing is too loose Position of joints of packing is bad Packing size is wrong or packing wears out Shaft sleeve wears out 	 Tighten the gland nuts adequately The joints of packing should be placed in opposite direction alternatively Replacing Replacing